Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Burcu Arslan, ${ }^{\text {a * }}$ Canan Kazak, ${ }^{\text {a }}$ Hacer Karataș ${ }^{\text {b }}$ and Seçkin Özden ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics, Ondokuz Mayis University, TR-55139, Samsun, Turkey, and
${ }^{\mathbf{b}}$ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Tandoğan, Ankara, Turkey

Correspondence e-mail: nbarslan@ttnet.net.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.117$
Data-to-parameter ratio $=18.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Methyl 1-n-butyl-2-(3,4-dichlorophenyl)-1H-benz-imidazole-5-carboxylate

A new benzimidazole compound, methyl 1-n-butyl-2-(3,4-dichlorophenyl)-1 H -benzimidazole-5-carboxylate, $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Cl}_{2}$ $\mathrm{N}_{2} \mathrm{O}_{2}$, has been synthesized by the condensation of methyl 3-amino-4-(n-butylamino)benzoate with an $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ adduct of 3,4 -dichlorobenzaldehyde. The molecule is twisted with a $\mathrm{C}-$ $\mathrm{C}-\mathrm{C}-\mathrm{N}$ torsion angle of -39.7 (3) ${ }^{\circ}$ between the phenyl and benzimidazole groups. In the crystal structure, symmetryrelated molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, forming a chain.

Comment

The benzimidazole ring system is of interest because of its diverse biological activities, including antifungal (Göker et al., 2002), antibacterial (Weidner-Wells et al., 2001), antiparasitic (Navarrete-Vazquez et al., 2001), anticancer (Badawey \& Kappe, 1999), anti-allergic (Nakano et al., 2000), anti-ulcer (Göker \& Düver, 1990) and antihypertensive (Matsumori, 2003). New drugs carrying a benzimidazole moiety, such as omeprazole (Göker \& DüVer, 1990), candesartane (Matsumori, 2003) and mizolastine (Dubertret et al., 1999), have been used clinically, and considerable effort has been invested recently to discover new potent agents (Mekapati \& Hansch, 2001). From our laboratory, the synthesis and crystal structure analyses of several benzimidazoles have already been reported (Göker et al., 1995, 1999; Özbey et al., 1998; Kendi et al., 1999). The versatility of this ring system has prompted us to synthesize new analogs, including the title compound, (I).

Received 21 May 2004 Accepted 9 August 2004 Online 13 August 2004

(I)

The molecular structure of (I) is shown in Fig. 1 and selected bond distances and angles are given in Table 1. The dihedral angle between the plane of the ring defined by atoms $\mathrm{N} 1 / \mathrm{C} 7 / \mathrm{N} 2 / \mathrm{C} 8 / \mathrm{C} 9$ and the C1-C6 phenyl ring is 36.68 (7) ${ }^{\circ}$, with a C3-C4-C7-N1 torsion angle of -39.7 (3) ${ }^{\circ}$. The molecule shows small deviations from planarity, the largest being 0.014 (2) \AA for atom C8 in the benzmidazole ring system and 0.015 (4) \AA for atom C 1 in the $\mathrm{C} 1-\mathrm{C} 6$ phenyl ring. The $\mathrm{C} 18=\mathrm{O} 1$ bond length is 1.198 (2) \AA and the $\mathrm{C} 19-\mathrm{O} 2-\mathrm{C} 18-$ C 11 torsion angle is $178.78(17)^{\circ}$. In the molecule, the $\mathrm{C}-\mathrm{Cl}$ bond lengths are very similar, $\mathrm{Cl}-\mathrm{Cl} 1$ being 1.725 (2) \AA and C6-Cl2 being 1.729 (2) \AA.

Figure 1
An ORTEP-3 (Farrugia, 1997) view of (I), with the atomic numbering scheme and 50% probability displacement ellipsoids.

Figure 2
An ORTEP-3 (Farrugia, 1997) packing diagram of (I), viewed along the a axis. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines.

In the crystal structure, symmetry-related molecules are connected by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a polymer chain (see Table 2 and Fig. 2).

Experimental

To a suspension of methyl 3-amino-4-(n-butylamino)benzoate ($0.22 \mathrm{~g}, 1 \mathrm{mmol}$) in dimethylformamide (1 ml), a sodium metabisulfite adduct of 3,4 -dichlorobenzaldehyde $(0.347 \mathrm{~g}, 1.25 \mathrm{mmol})$ was added and heated at 403 K for 4 h . The reaction mixture was cooled then poured into water. The solid product obtained was collected by filtration and washed with water. It was then chromatographed with EtOAc- n-hexane ($1: 3$) (yield $0.2 \mathrm{~g}, 53 \%$). Pale-green crystals of (I) were obtained (m.p. 353 K). IR (CO): $1706 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-
$\left.d_{6}\right): \delta 0.67\left(t, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.03-1.09\left(m, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.54-1.58(m$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.79\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.26\left(t, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}, J=7.2 \mathrm{~Hz}\right)$, $7.70-7.8$ ($m, 3 \mathrm{H}, \mathrm{H}-5,6,7$), 7.84-7.87 ($d d, 1 \mathrm{H}, \mathrm{H}-6, J_{o}=8.6, J_{m}=$ $1.4 \mathrm{~Hz}), 7.99\left(d, 1 \mathrm{H}, \mathrm{H}-2, \mathrm{~J}_{m}=1.8 \mathrm{~Hz}\right), 8.20\left(d, 1 \mathrm{H}, \mathrm{H}-4, J_{m}=1.2 \mathrm{~Hz}\right)$; MS (ES+): $377(M+1)(100 \%)$.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=377.25$
Monoclinic, $P 2_{\downarrow} / n$
$a=9.3359(6) \AA$
$b=14.4051(8) \AA$
$c=16.3707(11) \AA$
$\beta=123.459(4) \AA^{\circ}$
$V=1836.8(2) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.364 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 15013 \\
& \text { reflections } \\
& \theta=1.5-29.0^{\circ} \\
& \mu=0.37 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prismatic, pale green } \\
& 0.50 \times 0.30 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS- 2 two-circle
goniometer diffractometer ω scans
Absorption correction: none
30007 measured reflections
4133 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.117$
$S=1.04$
4133 reflections
227 parameters
H -atom parameters constrained

$$
\begin{aligned}
& 2727 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.088 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-12 \rightarrow 12 \\
& k=-18 \rightarrow 18 \\
& l=-21 \rightarrow 21 \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0573 P)^{2}\right. \\
& \quad+0.0182 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.29 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.0164 (18)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 1$	$1.725(2)$	$\mathrm{O} 1-\mathrm{C} 18$	$1.198(2)$
$\mathrm{Cl} 2-\mathrm{C} 6$	$1.729(2)$		
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7-\mathrm{N} 1$	$-39.7(3)$	$\mathrm{C} 19-\mathrm{O} 2-\mathrm{C} 18-\mathrm{C} 11$	$178.78(17)$

Table 2
Hydrogen-bonding geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5 $\cdots \mathrm{O}^{\mathrm{i}}$		0.93	2.53	$3.336(3)$
C13-H13 $^{\mathrm{i}} \mathrm{O}^{\mathrm{ii}}$	0.93	2.41	$3.340(2)$	146

Symmetry codes: (i) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$.
H atoms were included in calculated positions and treated as riding atoms; $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: X-AREA (Stoe \& Cie, 1996); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Badawey, El-S. A. M. \& Kappe, T. (1999). Eur. J. Med. Chem. 34, 663-667.
Dubertret, L., Aguttes, M. M. \& Tonet, J. (1999). J. Eur. Acad. Dermatol. Venereol. 12, 16-24.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Göker, H., Ayhan-Kılcıgil, G., Tunçbilek, M., Kuş, C., Ertan, R., Kendi, E., Özbey, S., Fort, M., Garcia, C. \& Farre, A. (1999). J. Heterocycles, 51, $2561-$ 2573.

Göker, H., Kuş, C., Boykin, D. W., Yildiz, S. \& Altanlar, N. (2002). Bioorg. Med. Chem. 10, 2589-2596.
Göker, H. \& DüVer, C. (1990). Pharmacia-JTPA, 30, 98-109.
Göker, H., Ölgen, S., Ertan, R., Akgün, H., Özbey, S., Kendi, E. \& Topçu G. (1995). J. Heterocycl. Chem. 32, 1767-1773.

Kendi, E., Özbey, S. \& Göker, H. (1999). Acta Cryst. C55, 243-245.
Matsumori, A. (2003). Eur. J. Heart Failure, 5, 669-677.
Mekapati, S. B. \& Hansch, C. (2001). Bioorg. Med. Chem. 9, 28852893.

Nakano, H., Inoue, T., Kawasaki, N., Miyataka, H., Matsumoto, H., Taguchi, T., Inagaki, N., Nagai, H. \& Satoh, T. (2000). Bioorg. Med. Chem. 8, 373-380.
Navarrete-Vazquez, G., Cedillo, R., Hernandez-Campos, A., Yepez, L., Hernandez-Luis, F., Valdez, J., Morales, R., Cortes, R., Hernandez, M. \& Castillo, R. (2001). Bioorg. Med. Chem. Lett. 11, 187-190.
Özbey, S., Kendi, E., Göker, H. \& Tunçbilek, M. (1998). J. Chem. Crystallogr. 28, 461-464.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Stoe \& Cie (1996). X-AREA and X-RED. Stoe \& Cie, Darmstadt, Germany. Weidner-Wells, M. A., Ohemeng, K. A., Nguyen, V. N., Fraga-Spano, S., Macielag, M. J., Werblood, H. M., Foleno, B. D., Webb, G. C., Barrett, J. F. \& Hlasta, D. J. (2001). Bioorg. Med. Chem. Lett. 11, 1545-1548.

